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Abstract

The Orlicz mean zonoid is defined by Guo, Leng and Du, and establish an affine isoperi-
metric inequality for it. Using shadow systems, we provide a new proof of the affine isoperi-

metric inequality for the Orlicz mean zonoids.
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1 Introduction

Motivated by recent progress in the asymmetric L,-Brunn-Minkowski theory (see e.g. [7, 8,
9,14, 17, 18, 22, 23]), Lutwak, Yang, and Zhang introduced the Orlicz Brunn-Minkowski theory
in two articles [12, 13]. Since this seminal work, this new theory has evolved rapidly (see e.g.
[4, 6, 10, 11, 15, 16, 24]. Not long ago, Guo, Leng and Du in [5] introduced an Orlicz mean
zonoid, and establish an affine isoperimetric inequality for the Orlicz mean zonoid. In this paper,
inspired by the work of Campi, Gronchi [1, 2, 3] and Li et. al.[16], we will give an alternative
proof of the affine isoperimetric inequality for the Orlicz mean zonoid.

In order to state the results regarding to the Orlicz mean zonoid bodies, several notation
are needed. For a compact convex subset K in R, let h(K, ) = hg(-) : R® — R denotes the
support function of K; that is,

hi(z) = max{(z,y) :y € K}, x € R",

where (z,y) denotes the inner product of z and y in R™. For ¢ > 0, the support function of the
convex body cK = {cx : © € K} is hex = chg. For T € GL(n), it follows that

hTK(l’) = hK(Ttx). (1‘1)

AMS Subject Classification: 52A30, 52A40.

This work is supported by the National Natural Science Foundation of China(Grant No.11561020,11161019) and
is supported by the Science and is partly supported by the National Natural Science Foundation of China (Grant
No.11371224).

*E-mail: matongyi@126.com, matongyi_ 123@163.com (Tongyi Ma).



398

T. Ma

The Hausdorff distance (K, L) between the convex bodies K and L is

S, L) = |l ~ billoo = masx, [hic(u) — hu )]

We write K™ for the set of convex bodies in R", and write K for the set of convex bodies that
contain the origin in their interiors.

The radial function p(K,-) = pr(-) : R™\{o} — [0,00), of a compact star-shaped about the
origin K C R", is defined by

p(K,z) =max{\A>0: \z € K}.

If pk is positive and continuous, then K is called a star body about the origin.

Let ¢ : R — [0,00) be an even convex function such that ¢(0) = 0. This means that ¢
must be decreasing on (—oo, 0] and increasing on [0, 00). The set of such ¢ is denoted by C. Let
K C R™ be a star body about the origin with volume V(K) and ¢ € C, the Orlicz centroid body
I'yK of K is a convex body whose support function at 2 € R™ is defined by (see [12])

huK(x):inf{bo: V(IK)/K</>(<I;\y>>dy§1},

where the integration is with respect to Lebesgue measure in R".
The Orlicz centroid body is the natural generalization of the L,-centroid body I',K and the
centroid body T'K. For p > 1, let ¢(t) = ¢,,(t) = |t|P, then

Ty, K =T,K.

Lutwak et al. in [12] obtain the following Orlicz Busemann-Petty centroid inequality. If
¢ € C and K € K7, then the volume ratio

V(TK)/V(K)

is minimized if and only if K is an ellipsoid centered at the origin. Using shadow systems, Li
and Leng [16] provide a new proof of the Orlicz Busemann-Petty centroid inequality.

Recently, Guo and Leng et al.[5] introduced an Orlicz mean zonoid operator Z, which is on
Orlicz generalization of the mean zonoid operator of Zhang [25]. Let K, L € K™ and ¢ € C. The
Orlicz mean zonoid body Z4(K, L) of K and L as the convex body whose support function at
x € R" is defined by

hZa>(K,L)(x)=inf{)\>0: W/K/Jﬁ(w)dydzg 1}, (1.2)

where the integration is with respect to Lebesgue measure in R™.
Taking K = L in (1.2), then

hz,x(z) == hz¢(K’K)(m)=inf{A>O: @/K/Kd)(w)dydzgl}.

Guo and Leng et al.[5] established the following general affine isoperimetric inequality for
for Orlicz mean zonoids: If K, L € K} and ¢ € C, then

V(Z4(K,L)) > V(Z4(Bxk, BL)), (1.3)
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with equality if K and L are dilated ellipsoids having the same midpoints, where By denote the
n-ball with the same volume as K centered at the origin.

Motivated by the idea of Campi and Gronchi [1], Li and Leng [16], our job is to provide a
new proof of the affine isoperimetric inequality for the Orlicz mean zonoids. The critical part
of the proof in [5] is that the volume of the Orlicz mean zonoid body is not increased after a
Steiner symmetrization. It is well known that every convex body can be transformed into a ball
by a sequence of suitable Steiner symmetrizations. In this paper, we also follow this principle.
The technique we will use is that of shadow systems developed by Rogers [20] and Shephard
[21].

2 Shadow system of convex body

A shadow system (or a linear parameter system) along the direction v is a family of convex
sets K; C R™ that can be defined by (see [20, 21])

Ky =conv{z+ a(z)tv: z€ ACR"} (2.1)

where A is an arbitrary bounded closed set of points, « is a real bounded function on A, and
the parameter ¢ runs in an interval of the real axis.
For a convex body K in R", a parallel chord movement along the direction v is a shadow
system defined by
K ={z+ 8w Htv: ze K,te0,1]}, (2.2)

where f3 is a continuous real function on the projection K|v* of K onto v+ = {z € R" : (v,2) =
0}. In other words, to each chord of K = K| parallel to v we assign a speed vector 3(x)v, where
x is the projection of the chord onto v*, then let the chords move for a time ¢ and denote by
K their union. Such a union has to be convex, this is the only restriction we have on defining
the speed function §.

Let K be a convex body in R™. For u € S"~!, the Steiner symmetrization S, K with respect
to the hyperplane u" is the set generated by translating all chords of K that are parallel to u
so that their midpoints are on the hyperplane u™".

Another instance is the movement related to Steiner symmetrization. For a direction v and
let

K={z+yweR": ze€K|v',yeR, f,(x) <y<gy(2)}, (2.3)

here f, and —g, are convex functions on K|vt. If one takes B(z) = —(fy(z) + gy(x)) in (2.2)

and ¢ € [0, 1] such that Ky = K and K; = KV, where K" is the reflection of K in the hyperplane

vt, and K, /2 = Sy K is the Steiner symmetrization of K with respect to vt

The following lemma is due to Shephard [21].

Lemma 2.1. Every mized volume involving n shadow systems along the same direction is
a convez function of the parameter. In particular, the volume V(K;) and all quermassintegrals

Wi(Ky),i=1,2,--- ,n, of a shadow system are convex functions of t.
Lemma 2.2. (see [5]) Suppose K,L € K™ and ¢ € C. Then for xy € R™\{o},

_ 1 (o, (y — 2)) _
hz,k,0)(x0) =X < VEVD) /1</L¢<4)\0 >dydz =1. (2.4)
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The operator Z,; intertwines with elements of GL(n):

Lemma 2.3. Let ¢ € C. For two convex bodies K,L € K" and a linear transformation
T € GL(n),
Z4(TK,TL) =T(Zy(K, L)).

Proof. Taking y; = Ty and 21 = T2, by V(TK) = |T|V(K),dy = |T|dy, et. al., and
(1.1), we have

prarwan®) = w8 {3> 0 e [, ), (5 )]

= inf{)\>01 m/j(/Lé(W\—_Tm>dyldzlgl}

- inf{)\>0: W/K L¢<<Ttm’+zl)>>dyldzlg1}
).

= hz, ) (T'x) = hrz,k ) (@

Therefore, we have Z4(TK,TL) = T(Z4(K,L)). O

3 Proof of the affine isoperimetric inequality for Orlicz mean
zonoids

In [1], Campi and Gronchi prove that a family of parallel chord movement under the behavior
of the L,-centroid operator is still a shadow system along the same direction. This result leads
another proof of the L,-Busemann-Petty centroid inequality. The similar results for Orlicz
centroid operator also hold, which is obtained in [16]. We first prove the following results.

Theorem 3.1. If {K; :t € [0,1]} and {L; :t € [0,1]} are parallel chord movement along the

direction v, respectively. Then Zy(Ky, Ly) is a shadow system along the same direction v.

To prove Theorem 3.1, the following some lemmas will be needed.

Lemma3.2. If {K; :t € [0,1]} and {L; : t € [0,1]} are parallel chord movement along the
unit direction v, respectively. Then the orthogonal projection of Z4(Ky, Ly) onto vt is indepen-
dent of t.

Proof. By (1.2) and (2.2), we have

bz, (K:Le) ()

- 1nf{/\>0 Kt i /K/L ( >)dydz<1}
_ inf{/\>0 KO)IVLO /KO/LD ( y+5(y|“ )UA_Z_ﬁ(ZW)w)))dydzg}

_ inf{A>0:m/f</L¢( Yy — )+(,B(ylif)fﬁ(ZIUL))t@,v))dydzS1}.
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Then for z € ’UJ'7 hZ(b(Kt,Lt)(:E) = th)(K,L)(I). O

The following lemma shows that hz,(x, ) (z) is a Lipschitz function of ¢, hence is continuous
with respect to t.

Lemma3.3. If K,L € K" and ¢ € C, then for t1,ts € (0,1] and x € R™\{o},
h 2y (Ko, L) () = iz (o 1) (@)] < 81— B2 [[(B(ylv™) = B2lo™) (@, v) 4,

where || - || is defined for f: K™ x K™ — R which is continuous and not constant to 0 as

||f||¢:inf{)\>0 // ( )dd <1}

Proof. Let f,g : K™ x K™ — R be continuous and not constant to 0. Then the strict
convexity of ¢ on R implies that

Iflo =M < // ( )dd - (3.1)
Il =2 = ymva o ) o(2%

The convexity of the function ¢ shows that

(b(f(y’jf-tiiy,@) : /\1/}:>\2¢(f(§\112)) N /\1)-\5-2/\2(15(9(2)/\712))'

and

)d dz = 1. (3.2)

Integrating both sides with respect to the Lebesgue measure of K, L and using (3.1), (3.2) give

// ( y;ii(y’ )>dydz§1.

From the definition of || - ||¢7 we get

If +glle < A1+ 22 =l flls + llglls-
Thus
ILflle = llgllsl < 1 = glls-
The facts that ¢ is even and

hz,k,0(@) = {2y — 2) + (Blylvt) — Bzo™))t(z, )]l

conclude the proof. O

Lemma 3.4. (see [5]) If K,L € K", then hz,x 1) is the support function of a convex body
and the operation Zgy maps K" x K" to K.

From Lemma 3.4, since Z4(Ky, L) is a convex body for every t € [0, 1], it can be represented
by
Zy(Ke, L) = {z +yv : @ € (Zy(Ko, Lo)) o™, fulz) < y < ge()}, (3-3)

where f; and —g; are convex functions defined on (Zy (Ko, Lo))|v+.
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Lemma3.5. If {K; :t € [0,1]} and {L; : t € [0,1]} are parallel chord movement along the
unit direction v, respectively. Then for every x € (Z4(Ko, Lo))|v*,

gi(w) = uig)fl{hzo(m,m)(u +v) = (z,u)}, (3.4)
and
fi(z) = Sélpl{@»u) = hz, (k) (w—v)} (3.5)

Proof. Let u € vt. For o € (Z4(Ko, Lo))|v+ we have
z+gi(z)v € Zy(Ky, Ly), x4+ fe(z)v € Zy(Ky, Ly).
The definition of the support function shows that
(x + gi(z)v,u+v) < hZMK,,,L,,)(“ + v),

(x + fi(z)v,u —v) < th)(Kt,Lt)(u — ).

Thus, for all u € v+,
(z,u) + ge(2) < bz, 1) (u+v),

(z,u) = fi(x) < hz, K, L) (w—0).

Since Z4(Ky, L) has support hyperplanes at the two points z+g; (x)v, v+ fi (x)v € 0(Z4(Ky, Ly)),
for x € relint((Z4(Ko, Lo)|v+), there exist two vectors u/ 4+ v and u” — v with «/,u” € v+ such
that

(@ + ge(@)v,u +v) = hg, (kL) (W + ),

(x + fi(z)v,u" —v) = hZ‘,,(Kt,Lt)(u” —v).

If o ¢ relint((Z4(Ko, Lo)|v"), it is possible that g(z) = 0, fy(z) = 0. Then we cannot find
o', 4" € vt such that

(@ + gi(2), u' + v) = (z, ul> = hZo(Kt,Lt) (UI + ),

<$ + ft(l‘)’v, u’ — U) = <1’, u”> = thb(Kf,,Lr,)(U” — U).

The continuity of support functions ensures that we can take the infimum and supremum for all
u € v-. Therefore, we get

gi(x) = inf {hz, kL, (u+v) = (2, u)}

uey
and
fe(@) = sup {(z,u) — hz,(x, ) (u—v)}
uevt
for every x € (Z4(Ko, Lo))|v+. O

Since hz,(x,,r,)(2) is a Lipschitz function of ¢, with Lipschitz constant 1(B(ylvt) = B(z|vt))
(®, vy, from Lemma 3.5 we deduce that g,(x) and —fi(x) are Lipschitz functions of ¢ too.
Therefore g.(z) and fi(z) are continuous with respect to t. Additionally, the convexity of g;(z)
and — fi(x) with respect to ¢ can be stated as follows.
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Lemma3.6. If {K;:0<t <1} and {L;: 0 <t <1} are parallel chord movement along the
unit direction v, respectively. Then for every x € (Z4(Ko, Lo))|v*, gi(x) and — fi(z) are convex

functions of the parameter t in [0, 1].

Proof. We first show that if uq, us € v+, then

hy, (Kﬂ;_tz’%;ﬁ) (w1 +u2 4+ 2v) < hz, (K, L,) (W1 +0) + bz, (k,, 1,,) (U2 +0). (3.6)

Indeed, let hz,(x,, L,,) (U1 + ) = A1y hz, (K, L) (U2 +0) = Ao, and write 5, (y, z) = B(ylv™) —
B(z|vt). The convexity of ¢ gives that

(w1 +up + 20,y — 2) + Bu(y, 2) 252 (uy + uz + 20, v)
d)( A1+ A2 )

- ¢<<u1 0,y —2) + Bo(y, 2t + (uz + v,y — 2) + Bu(y, z)t2>

A1+ Ao
_ ¢<(u1 + 0,y — 2) + Bu(y, 2)t1 (u1 +v,0)
A+ Ao
+(uz +v,y — 2) + Bo(y, 2)ta(us —l—v,v))
A1+ A2

< A1 ((ul +u,y — 2) + Bu(y, 2)t1 (u1 + v, v))

T AL+ g A1
A2 ¢<(uQ + v,y — 2) + Bu(y, 2)ta(uz + v,v)).

(3.7)

+
AL+ A2 Ao
Integrating both sides and using (2.4), we obtain (3.6).
It follows from Lemma 3.5 and (3.6) that
2(u +v)) — (z, 2u)}

29uzia(¥) = inf {th;(KiL;iz,LLL—;iz)
2 VPR )
inf {hza,(m1 L)W +0) + hzy(k,, 0,) (U1 +0) = (2w + u2>}

uy,ug €Vt

= inf {hzw(KtlaLt1)(u1 +’U) - (z,u1>}

u€vt

(u1 + u2 + 2v) — (x,u; + uz)}

IN

+uzig£L {hzé(K,,Q,Ltz)(uz +v) — (z, u2>}

= gt1($) + Gt, (1:)

The convexity of the function — f; of ¢ can be proved in the same way. d

Lemma3.7. If {K; :t € [0,1]} and {L; : t € [0,1]} are parallel chord movement along the
unit direction v, respectively. Then for every x € (Z4(Ko, Lo))|v+ and t1,t2,6 € [0,1],

fory -0yt (%) < Ogey () + (1 = 0) fro(2) < Gouy+(1 -0yt (2)-
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Proof. Let u,us € v+ and

hzy(Key L) (FOUL+00) = M1y Bz (K, 0 gy Loy s1 o) (U2 = V) = A2.
Then we have
(ug — Ouy — (1 — 0)v,y — 2) + Bu(y, 2)ta(uz — Ouy — (1 — 0)v,v)
¢< AL+ Ag )
_({ug — v,y — 2) + (—0uy +0v,y — z) — Bu(y, 2)((1 — O)ta 4 0ty — Ot1)
B ¢< PR >
1+ A2
N (b((uz — 0,y —2) + Bu(y, 2)(1 — )t + 0t1)(uz — vw))
T AL+ e Ao
n A1 ¢((—9u1 +0v,y — 2) + Bu(y, 2)t1{(—0us + bv, v))
A1+ A2 A

Integrating both sides and using (2.4) give

th(Ktz,Ltz)(’U’? —fuy — (1 — 9)11)
< hzy iy 1) (Z0UL +00) +hz (K, gy Ko s (mgyey) (U2 = 0)-

Thus, from (3.8) and Lemma 3.5, we get

(1= 0)fi,(2)
= sup {(z, (1 = O)u) = hz,(kiy,1,,) (1 = O)(u—0))}

ucvt

= sup  {(z,uz —Ow) — hz(k,, 1., (u2 — Our — (1 = )v)}
—uy,ug€vt -

> sup  {(z,u2 — Ouy) — thb(Ktl,L:l)(_e“l + 6v)
—uy,ug€vt

_th)(KetlJr(ue)zQ,L9t1+(179>z2)(UQ —v)}
= sup {(z,—0uw1) — hz, (K, L,)(—0ur +0v)}

—ujevt

+ sup {(z,ug) — ths(K()t1+(1 0ytg Loty +(1 0)12)(u2 ~v)}
up vt

= —0g1,(2) + for,+(1-0)t, (T)-

This gives the first inequality. The second inequality follows by interchanging ¢; with t5 and x
with —z. |

In order to prove Theorem 3.1 we shall require the following crucial lemma, which was proved
by Campi and Gronchi [2].

Lemma3.8. If {H,:t € [0,1]} be a one-parameter family of convex bodies such that Hyv*
is independent of t. Assume that the bodies Hy are defined by

H={z+yv: z¢€ Ht|’UJ‘,y eR, filz) <y <glx)}, telo,1],

for suitable functions g; and f;. Then {H; : t € [0,1]} is a shadow system along the direction v
if and only if for every x € Holvt,

(1) g¢(x) and — fi(x) are convex functions of the parameter t in [0, 1],

(2) Froi+a-nt () < Agy () + (1 = N fr, (%) < gagy+(1-2)1 (%), for every t1,t2, X € [0,1].



A new proof of the affine isoperimetric inequality for Orlicz mean zonoids 405

Proof of Theorem 3.1. Let {K; : t € [0,1]} and {L; : t € [0,1]} are parallel chord
movement along the unit direction v, respectively. By Lemma 3.2 we obtain that the orthogonal
projection of Z4(Ky, L) onto v* is independent of ¢. Then from (3.3) and Lemma 3.8 it is
sufficient to show that the family Zy4(K}, L) satisfies conditions (1) and (2) of Lemma 3.8. In
fact, Lemma 3.6 and Lemma 3.7 demonstrate these two conditions for Z4(Ky, Ly). Therefore,
we deduce that Z4(Ky, L¢) is a shadow system along the direction v. O

Theorem 3.9. If {K; : t € [0,1]} and {L; : t € [0,1]} are parallel chord movement with
speed function (3, respectively. Then the volume of Zy(Ky, L;) is a strictly convexr function of t
unless 3 is linear function defined on v>, that B(z) = (z,u).

Proof. By Fubini’s theorem it is easy to see that

V(L) = [ ((2) ~ fla))d. (3.9

(Z4(Ko,Lo)) v+

That the volume of Z;(K;, L;) is a convex function of ¢ therefore follows from the convexity of
gi(z) and — f(z) with respect to t.
Suppose that

1 1
V(Z¢ (Kw,hlyz)) = SV(Zo(En. L)) + 5V (Zo(Kr, L))

for some t1,ty € [0,1]. From (3.9) and the continuity of g, f; with respect to x, it follows that

gusia (2) = s () = 5 (00 (@) + 90,(2) = 5 (fu @) + fu(®) (3.10)

for almost every x € (Zy(Ko, Lo))|vt. Let = € relint((Zs(Ko, Lo))|v"). Then there exist

uy, U2, ug, us € v such that

1 1
§(gt1 (@) + g1, () — §(ft1 () + fip ()
1
- 5 (hZO(KtleH) (ul + U) + hZ«b(Ktvatz) (u2 + 1))
+hz, K, L) (Us — v) + hz,(x,, 1) (U — V)
—(x,u1) — (z,u2) — (x,uz) — <w,u4)).

By (3.6) and Lemma 3.5 we get

S 000() + 90 (@) — 5 (@) + fu (@)

oy (B 10) (e )
us + uyg 7 B u3 + g (3.11)
+hz¢(Kh?m,Lh?m)( 2 ”) <I 2 >

2 guin (2) = fuin ().

The equality of (3.10) forces equality in (3.11) and equality in (3.7). Since ¢ is strictly convex,

we have
<U1 + 0,y — Z> + 517(3/7 Z)tl _ <u2 +v,y— Z> + Bv(y, Z)tZ
h = h\ (3.12)
1 2
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for every y € Ly and z € Ky, owing to the continuity of 3.
Setting y = v/ +sv,1y’ € Lo|v* and z = 2/ — sv, 2’ € Kolvt, in (3.12) and differentiating with
respect to the parameter s, it turns out that A;/A2 = 1, that is,

(ur + v,y = 2) + Bo(y, 2)t1 = (uz + v,y — 2) + Bu(y, 2)t2.
So we conclude that 3(x) = (x,u) for some vector u. This completes the proof. O

The following lemmas will be needed.

Lemma 3.10. (Shephard [21]) The volume of a shadow system is a convex function of the

parameter t.

Lemma 3.11. (see [5]) Let ¢ € C, then the operator Zy : K" x K™ — Ky is continuous in
the Hausdorff metric.

In order to give a new proof of (1.3), we will an affine isoperimetric inequality for for Orlicz
mean zonoid body can be redescribed as follows:

Theorem3.12. (The affine isoperimetric inequality for Orlicz mean zonoids, see [5]) If ¢ € C
and K,L € K7, then
V(Z4(K,L)) > V(Zy(Bk, Br))

with equality if K and L are dilated ellipsoids having the same midpoints.

Proof. Theorem 3.1 and Lemma 3.10 imply that the volume of Z4(K;, L;) is a convex
function of ¢. From Lemma 2.3 we get that Zy4(K", L") = (Z4(K,L))". Thus

V(Z6(SuK, SuL)) = V(Zs(Kyj2, Lyy2))

< %V(Z¢(K0;L0)) + %V(Z¢(K1,L1))
= V(Z¢(KL)

that is, the volume of the Orlicz mean zonoid body is not increased after a Steiner symmetriza-
tion. The continuity of the Orlicz mean zonoid operator implies the continuity of the volume
V(Z4(K,L)) in the Hausdorff metric. It follows that the volume attains its minimum value
when K and L are ball.

If the speed function /3 of the parallel chord movement is linear, then it is easy to see that
K; and L; are linear image of K and L, for every ¢ in the range of the movement, respectively.
It is well known, see [19], that if K and L are not origin symmetric ellipsoids respectively, then
there exists a direction v such that for the Steiner symmetrization S, K of K and the Steiner
symmetral S, L of L, it follows that

S,K #TK, S,L+TL

for all T € GL(n). Therefore, V(Z4(K, L)) is minimized if and only if K and L are ellipsoids

centered at the origin. The affine isoperimetric inequality for Orlicz mean zonoids is established.

d

As an extension of the definition (1.2), we introduce the definition of the Orlicz mean zonoid
body for star bodies as follows.
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Let K, L C R™ be star bodies with respect to the origin and ¢ € C. The Orlicz mean zonoid
body Z4(K,L) of K and L as the convex body whose support function at € R" is defined by

hz¢(K,L)(m):inf{A>O: ml{ljd;(@)dydzgl}. (3.13)

By definition (3.13), we posted the following open problem:

Conjecture 3.13. If ¢ € C and K, L are star bodies with respect to the origin in R™, then
V(Z4(K,L)) > V(Z4(Bk, Br)),

with equality if K and L are dilated ellipsoids having the same midpoints.
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